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(Recu le 4 juillet 1966) 

(Dim6thylamino-2'-m6thyl-2')-6thyl-10-ph6nothiazine 
(chlorhydrate) 

Ce compos6 est connu en pharmacie sous le nom de 
Ph6nergan. 

Les cristaux utilis6s sont obtenus ~t partir d 'une solution 
dans le chlorobenz~ne; ils sont prismatiques, allong6s sui- 
vant [010]. 

a =  15,54+ 0,05 A 

b = 8,37 + 0,03 
c = 15,60 + 0,05 
/~= 122 ° 

Nombre de mol6cules dans la maille: 4 
Densit6 calcul6e: 1,24 
Groupe spatial: P21/c 

(Dim6thylamino-2'-m6thyl-2')-6thyl-10-ph6nothiazine 
(bromhydrate) 

Cristaux obtenus par 6vaporation d'une solution dans le 
dichloro- 1,2-6thane. 

Direction d'aUongement [001]. Cristaux prismatiques. 

a = b = 20,70 + 0,05 A c = 7,98 ___ 0,03/~ 

Nombre de mol6cules dans la maille: 8 
Densit6 calcul6e: 1,42 
Groupe spatial: I~ 

(Di6thylamino-2'-6thyl-1 ")-10-ph6nothiazine (ehlorhydrate) 

Ce compos6 est connu en pharmacie sous le nom de Dipar- 
col. 

Les cristaux utilis6s ont 6t6 obtenus 5. partir d 'une solu- 
t ion dans le chloroforme. Direction d'allongement [100]. 
Cristaux prismatiques. 

a = 7,37 + 0,03/~ 
b = 17,33 + 0,05 
c = 15,43 + 0,05 

/~ = 99 ° 30' 

Nombre de mol6cules dans la maille: 4 
Densit6 calcul~e: 1,15 
Groupe spatial: P21/c 

(Di6thylamino-2'-methyl-2')-6thyl-10-ph6nothiazine 
(chlorhydrate) 

Ce compos6 est connu en pharmacie sous le nom de Parsi- 
dol. 

Les cristaux utilis6s ont 6t6 obtenus ~t partir d 'une solu- 
tion dans le chloroforme. Direction d'allongement [100]. 
Forme prismatique. 

a = 8,82 + 0,03/~ 
b = 14,43 + 0,05 
c = 14,62 + 0,05 
/~ = 99015 ' 

Nombre de mol6cules dans la maille: 4 
Densit6 calcul6e: 1,27 
Groupe spatial: P21/c 

Methoxy-3-(dim6thylamino-3'-propyl)-I 0-ph6nothiazine 
(mal6ate acide) 

Ce compos6 est connu en pharmacie sous le nom de Mo- 
pazine. 

Cristaux en plaquettes, aUong6s suivant [001], obtenus 
partir d 'une solution dans le dichloro-l,2-6thane. 

a =  19,00+0,05/~ 
b=  19,91 +0,05 
c = 11,21 +0,03 

Nombre de mol6cules dans la maille: 8 
Densit6 calcul6e: 1,33 
Groupe spatial: Pbca 

Tous ces compos6s appar t iennent / t  une longue s6rie de 
produits utilis6s en pharmacologie pour leur action sur le 
syst6me nerveux central (neuroleptiques, antiparkinsoniens) 
et parfois aussi comme anti-histaminiques. 
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A Monte Carlo method for the calculation of the transmission factors of crystals of any shape and absorp- 
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di Mineralogia dell' Universitd di Modena, Italy 

(Received 31 January 1966) 

In the derivation of structure factors from intensities, the 
major difficulty arises in the calculation of the transmission 
factor, given by the formula 

1 I e x p ( - l d ) d V '  

where V is the volume of the crystal, u is the linear ab- 
sorption coefficient (cm-1), l is the length of the X-ray path 
from the crystal surface to the infinitesimal volume dV 
(incident beam) plus the distance from the infinitesimal 
volume dV to the crystal surface (diffracted beam); the 
integral is extended to the whole volume of the crystal. 
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It is possible to calculate such an integral by a very 
simple method, the application of which is limited neither 
by the shape of the crystal nor by its absorption power. 
The precision of the result can be fixed at will. The method 
of calculation is suitable for computer programming. 

The principles of this method are as follows: 
(1) Preliminary operations: the equations of the crystal 

faces, of the incident beam and of the diffracted beam 
must be given in cartesian coordinates. 

(2) A point is chosen at random inside the volume of the 
crystal (this is why the method is a Monte Carlo one). 

(3) One calculates the length of the X-ray path from the 
crystal surface to the point (incident beam) and from 
the point to the crystal surface (diffracted beam). 

(4) The value of exp( -# l )  is calculated and memorized. 
(5) Another point is chosen at random, the corresponding 

value of exp( -# l )  is calculated and memorized, and 
SO o n .  

(6) After values of exp( - /d )  have been obtained up to a 
predetermined number (100 in our program), a first 
average value, A'~00, is calculated along with the r.m.s. 
deviation o-. Since the r.m.s, deviation a(N) of the aver- 
age of N values is 

¢z(N)=all/N 

one can deduce the number N of exp(-al)-values 
which must be calculated to obtain a new average with 
a predetermined r.m.s, deviation a(N). The calculations 
of exp(-#l)-values are continued until N such values 
have been collected, and the final average is the required 
transmission factor. 

The six steps outlined above are sufficiently clear as a 
general description of the method, but to make its appli- 
cation easier, it is well to explain steps (1), (2), and (3) in 
greater detail. No further explanation seem to be necessary 
for steps (4), (5), and (6). 

In programming our calculation we use three coordinate 
systems one after the other: the first, whose axes are xyz, 
is the direct reference system, which in general is non- 
orthogonal; the second, whose axes are xoyozo, is orthog- 
onal, where Xo=X, yo is the normal to x in the plane xy; 
the third, whose axes are xayaza, is again orthogonal, where 
xa is the projection of the incident beam on the reflexion 
plane, and za is the normal to the reflexion plane. Obviously 
the first two reference systems are valid for any diffraction, 
whereas the third varies according to the diffraction in 
question. 

At the beginning, the first system (x,y,z) is used to ob- 
tain the coordinates of the crystal vertices, the equations 
of the crystal faces, the equation of the conic surface in- 
cluding all possible incident beams and the equation of the 
conic surface including all possible diffracted beams of a 
selected diffraction triplet. After that, all these coordinates 
and equations are transformed to the second (orthogonal) 
system xoyozo 

The equations of the two straight lines which are the 
intersections of the incident-beam-cone and the diffracted- 
beam-cone are then deduced. The resultant coordinates and 
equations are then further transformed to the system xayaza. 
A point Ox is chosen at random inside the crystal volume. 
The origin of the system is set at O1. Now the incident 
and the reflected beams are lying in the xaza plane. The 
coordinates of the points along the incident beam where 
it meets each of the crystal faces (produced if necessary) 
are calculated; only the nearest point is relevant; the length 
of the path of the incident beam is calculated; the same 
is done for the diffracted beam. The value of exp( -# l )  is 
now readily calculated. The calculation continues as indi- 
cated in steps (4), (5), and (6). 

On this basis a FORTRAN program has been compiled, 
which is suitable for crystals of any absorption and form 
(provided they have no re-entrant angles) and for intensities 
measured from Weissenberg and Buerger photographs. On 
an IBM 7094 computer the time needed for assemblage is 
about two minutes, the time needed to calculate one trans- 
mission factor for a crystal of rather simple form (6 faces, 
maximum length 0.2 mm) with a r.m.s, error of 3 % is 
about 14 seconds. The computing time is proportional to 
the square of the precision required, to the number of the 
crystal faces and to/~ times the dimensions of the crystal. 
The program can easily be adapted for use with other 
experimental data, or with crystals with re-entrant angles, 
or with curved boundaries. 

Our method of calculating transmission factors has some 
features similar to the method of Busing & Levy (1957). 
Recently Coppens, Leiserowitz & Rabinovich (1965) and, 
a few months later, Wuensch & Prewitt (1965) have re- 
described the Busing & Levy (BL) method, in a way sui- 
table for general application. The BL method differs from 
ours mainly in that the X-ray path is calculated for a 
regularly spaced grid of points. The precision obtained is 
known only at the end of the calculation, and, if greater 
precision is needed, the calculation must be done again. 
With our method the precision is predetermined at will. 

As far as the difficulty of programming is concerned, our 
method is very simple. The BL method with its Gaussian 
quadrature seems to be more complicated from this point 
of view. The computing time of the BL method could be 
shorter, but we are unable to predict this with certainty, 
as until now a general program of the BL method is not 
available to us. In any case our program is not very time- 
consuming. 
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The diffraction spots recorded with a non-integrated Weis- (1961) studied microphotometer traces of such spots and 
senberg camera are generally split owing to the ~x, ~2 have derived a correction factor C(0) which is applied to 
doublet of the characteristic K~ X-ray line. Rae & Barker the measured peak height to yield the integrated intensity 


